Answer:
h=31.6 cm
Explanation:
Conservation of Energy in Fluids
Let's first take care of the motion magnitudes. We know the height and horizontal distance the jet of water has. It's similar to a horizontal launch of an object at a speed vo. The horizontal distance traveled is
[tex]x=v_o.t[/tex]
And the vertical distance is
[tex]\displaystyle y=\frac{gt^2}{2}[/tex]
From this last equation, we solve for t
[tex]\displaystyle t=\sqrt{\frac{2y}{g}}[/tex]
[tex]\displaystyle t=\sqrt{\frac{2\times 1.36}{9,8}[/tex]
[tex]t=0.278\ sec[/tex]
Now we find vo
[tex]\displaystyle v_o=\frac{x}{t}[/tex]
[tex]\displaystyle v_o=\frac{0.692}{0.278}[/tex]
[tex]v_o=2.49\ m/s[/tex]
Now we can set up the conditions for the conservation of energy for the fluid, assuming ideal conditions (no friction, compression, etc) we can state
[tex]\displaystyle \rho g h=\frac{\rho v_o^2}{2}[/tex]
solving for h
[tex]\displaystyle h=\frac{v_o^2}{2g}[/tex]
[tex]\displaystyle h=\frac{2.49^2}{2\times 9.8}[/tex]
[tex]h=0.316\ m[/tex]
[tex]\boxed{h=31.6\ cm}[/tex]