​Café Michigan's​ manager, Gary​ Stark, suspects that demand for mocha latte coffees depends on the price being charged. Based on historical​ observations, Gary has gathered the following​ data, which show the numbers of these coffees sold over six different price​ values:

Price Number Sold

$2.70 760
$3.50 510
$2.00 980
$4.20 250
$3.10 320
$4.05 480

Using these data, how many mocha latte coffees would be forecast to be sold according to simple linear regression if the price per cup were $2.80?

Can you please show your work?

Respuesta :

Answer:

677 units

At $2.80, the forecast for sales is 677 units

Explanation:

No           Price (x)     Number Sold (y)          xy        x²         y²

                    ($)                                   ($)          ($)         ($)

1                  2.7          760                2052        7.29     577600

2                 3.5          510                         1785       12.25    260100

3                   2                  980                 1960 4     960400

4                 4.2          250                 1050      17.64     62500

5                 3.1          320                 992   9.61      102400

6                4.05         480                       1944    16.4025     230400

∑                19.55        3300                9783    67.1925    2,193,400

Y = a + bX

Where a = {(∑y)(∑x²) - (∑x)(∑xy)} / {n(∑x²) - (∑x)²}

b = {n(∑xy) - (∑x)(∑y)} / {n(∑x²) - (∑x)²}

a = {(3300*67.1925) - (19.55*9783)} / {(6*67.1925) - 19.55²}

= {221,735.25‬ - 191,257.65} / {403.155 - 382.2025‬}

= 30,477.6‬/20.9525‬

= 1,454.60

b = {(6*9783) - (19.55*3300)} / 20.9525

= {58,698‬ - 64,515‬} / 20.9525

= -5,817‬/20.9525

= -277.62

putting the equation together:

Y = 1454.60 + (-277.62)X

∴ when x = $2.80

Y = 1454.60 - 277.62(2.80)

= 1454.60 - 777.34

= 677.26‬ ≈ 677 units