Respuesta :

To prove the QRST is a parallelogram.

Step 1: Given [tex]\angle T \cong \angle R[/tex] and [tex]\overline{Q R} \| \overline{T S}[/tex]

Step 2: [tex]\angle R Q S \text { and } \angle T S Q[/tex] are alternate interior angles.

Definition of alternate interior angles

Step 3: Alternate interior angle theorem:

If two parallel lines cut by a transversal then the alternate interior angles are congruence.

QR and TS are parallel lines cut by QS.

Therefore, [tex]\angle R Q S \cong \angle T S Q[/tex]

Step 4: Reflexive property of congruence:

Any geometric figure is congruence to itself.

Therefore, [tex]\overline{Q S} \cong \overline{Q S}[/tex]

Step 5: By the above steps

[tex]\angle T \cong \angle R[/tex] (Angle), [tex]\angle R Q S \cong \angle T S Q[/tex] (Angle) and [tex]\overline{Q S} \cong \overline{Q S}[/tex] (Side)

Hence [tex]\triangle Q T S \cong \triangle S R Q[/tex] (by ASA congruence theorem)

Step 6: Corresponding parts of congruence triangles are congruent.

[tex]\Rightarrow \ \overline{Q R} \cong \overline{T S}[/tex]

Step 7: Property of parallelogram:

If one pair of opposite sides are both parallel and congruent, then the quadrilateral is a parallelogram.

Hence Quadrilateral QRST is a parallelogram.