Answer:
a) L= 3568 m
b) 9×10^{-5} sec
c) 8.92×10^{-5} sec
Explanation:
runway length on the Earth L_o = 3600 m
Speed of the spacecraft flying past v= 4.00×10^7 m/s
then Einstein's length contraction theory,
[tex]L =L_o \sqrt{1- \frac{v^2}{c^2} }[/tex]
[tex]L =3600\sqrt{1- \frac{(4\times10^7)^2}{(3\times10^8)^2}[/tex]
Solving we get L= 3568 m
b) Time interval for an observer on earth when the spacecraft is directly over one end of the runway until it is directly over the other end.
L_o= 3600 m
speed v= 4.00×10^7 m/s
Then time interval Δt = L_o/v= [tex]\frac{3600}{4\times10^7}[/tex]= 9×10^{-5} sec
c) for the pilot the time interval will be
Δt_o = L/v = [tex]\frac{3568}{4\times10^7}[/tex] = 8.92×10^{-5} sec