Respuesta :
Answer:
[tex]1.9982154567\times 10^{-18}\ kgm/s[/tex]
762474.685899 MeV
3.1603639031 fm
Explanation:
v = 0.97 c
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
Relativistic momentum is given by
[tex]p=\dfrac{m_0v}{\sqrt{1-\dfrac{v^2}{c^2}}}\\\Rightarrow p=\dfrac{939\times 10^6\times 1.6\times 10^{-19}\times 0.97\times 3\times 10^8}{\sqrt{1-\dfrac{0.97^2c^2}{c^2}}}\\\Rightarrow p=\dfrac{(939\times 10^6\times 1.6\times 10^{-19})J/c^2\times 0.97c}{\sqrt{1-0.97^2}}\\\Rightarrow p=\dfrac{(939\times 10^6\times 1.6\times 10^{-19})\times 0.97}{c\sqrt{1-0.97^2}}\\\Rightarrow p=\dfrac{(939\times 10^6\times 1.6\times 10^{-19})\times 0.97}{3\times 10^8\times \sqrt{1-0.97^2}}\\\Rightarrow p=1.9982154567\times 10^{-18}\ kgm/s[/tex]
The momentum is [tex]1.9982154567\times 10^{-18}\ kgm/s[/tex]
Energy in MeV
[tex]E=\dfrac{m_0c^2}{\sqrt{1-\dfrac{v^2}{c^2}}}\\\Rightarrow E=\dfrac{939}{\sqrt{1-0.97^2}}\\\Rightarrow E=3862.52987766\ MeV[/tex]
Total energy is
[tex]E'=3862.52987766+7.9=3870.42987766\ MeV[/tex]
The total energy is 3870.42987766 MeV
For all the nucleons
[tex]E_t=197\times 3870.42987766=762474.685899\ MeV[/tex]
The energy is 762474.685899 MeV
Diameter = [tex]2\times 6.5=13\ fm[/tex]
From length contraction
[tex]D'=D\sqrt{1-\dfrac{v^2}{c^2}}\\\Rightarrow D'=13\sqrt{1-0.97^2}\\\Rightarrow D'=3.1603639031\ fm[/tex]
The diameter would be 3.1603639031 fm