Suppose that, after measuring the duration of many telephone calls, a telephone company found their data was well-approximated by the density function p(x) = 0.1 e^-0.1x, where x is the duration of a call, in minutes. What percentage of calls last between 2 and 3 minutes? Percent = percent What percentage of calls last 2 minutes or less? Percent = percent What percentage of calls last 4 minutes or more? Percent = percent What is the cumulative distribution function, P(t)? P(t) =

Respuesta :

Answer:

a) 7.79%

b) 67.03%

c) Cumulative Distribution Function

[tex]P(t) = \displaystyle\int^{\infty}_{-\infty} 0.1e^{-0.1t}~dt\\\\= \displaystyle\int^{b}_{a} 0.1e^{-0.1t}~dt, ~~a\leq t \leq b[/tex]

Step-by-step explanation:

We are given the following in the question:

[tex]p(x) = 0.1 e^{-0.1x}[/tex]

where x is the duration of a call, in minutes.

a) P( calls last between 2 and 3 minutes)

[tex]=\displaystyle\int^3_2 p(x)~ dx\\\\= \displaystyle\int^3_20.1e^{-0.1x}~dx\\\\=\Big[-e^{-0.1x}\Big]^3_2\\\\=-\Big[e^{-0.3}-e^{-0.2}\Big]\\\\= 0.0779\\=7.79\%[/tex]

b) P(calls last 4 minutes or more)

[tex]=\displaystyle\int^{\infty}_4 p(x)~ dx\\\\= \displaystyle\int^{\infty}_40.1e^{-0.1x}~dx\\\\=\Big[-e^{-0.1x}\Big]^{\infty}_4\\\\=-\Big[e^{\infty}-e^{-0.4}\Big]\\\\=-(0- 0.6703)\\= 0.6703\\=67.03\%[/tex]

c) cumulative distribution function

[tex]P(t) = \displaystyle\int^{\infty}_{-\infty} 0.1e^{-0.1t}~dt\\\\= \displaystyle\int^{b}_{a} 0.1e^{-0.1t}~dt, ~~a\leq t \leq b[/tex]