Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line.
y = ln 3x, y = 4, y = 5, x = 0; about the y-axis
The answer I got was (pi/18)(e^16-e^8) and that is wrong.

Respuesta :

Answer:

[tex]\frac{\pi}{18}(e^{10} - e^8) \approx 3324[/tex]

Step-by-step explanation:

We begin by solving for x in term of y

[tex]y = ln(3x)[/tex]

[tex]e^y = 3x[/tex]

[tex]x = \frac{e^y}{3}[/tex]

We can use the disk method to calculate the volume of rotation around the y axis

[tex]V = \int\limits^5_4 {\pi r^2} \, dy[/tex]

Where [tex]r = x = \frac{e^y}{3}[/tex]

[tex]V = \int\limits^5_4 {\pi \left(\frac{e^y}{3}\right)^2} \, dy\\V = \frac{\pi}{9}\int\limits^5_4 {e^{2y}} \, dy\\\\V = \frac{\pi}{9}\left[\frac{e^{2y}}{2}\right]^5_4\\V = \frac{\pi}{9}(e^{10}/2 - e^8/2) = \frac{\pi}{18}(e^{10} - e^8)\\ V = \frac{\pi}{18}19045.5 \approx 3324[/tex]