Answer:
0.001165 mol/L is the molar concentration of the solution.
Explanation:
Using Beer-Lambert's law :
Formula used :
[tex]A=\epsilon \times C\times l[/tex]
[tex]A=\log \frac{I_o}{I}[/tex]
[tex]T=\frac{I}{I_o}[/tex]
[tex]\log \frac{I_o}{I}=\epsilon \times C\times l[/tex]
where,
A = absorbance of solution
C = concentration of solution
l = path length
T = Transmittance
[tex]I_o[/tex] = incident light
[tex]I[/tex] = transmitted light
[tex]\epsilon[/tex] = molar absorptivity coefficient
We have :
Transmittance of the light = 100% - 39.8 % = 60.2 % = 0.602
Absorbance of the light :
[tex]A=\log \frac{1}{T}=\log \frac{1}{0.602}=0.2204[/tex]
Molar absorptivity coefficient = [tex]\epsilon = 291 L mol^{-1} cm^{-1}[/tex]
Length of the cell = l 6.5 mm = 0.65 cm ( 1 mm = 0.1 cm)
Now put all the given values in the above formula, we get the concentration of solution :
[tex]0.2204=291 L mol^{-1} cm^{-1}\times (C)\times (0.65 cm)[/tex]
[tex]C=0.001165 mol/L[/tex]
0.001165 mol/L is the molar concentration of the solution.