Respuesta :

Answer:

The answer to your question is below

Step-by-step explanation:

1)

  ∠A     use rule of cosines

             cos A = (15² - 18² - 6²)/-2(6)(18)

             cosA = -135/-216

             cos A = 0.625

                    A = 51.31

  ∠B =   rule of cosines

         sinB/6 = sinA/ 15

         sinB = 6sin51.31/15

         sinB = 6(0.052)

         sinB = 0.31

             B = 18.19

  ∠C = 180 - 18.19 - 51.31

  ∠C = 110.5

2) HP² = 27² + 23² - 2(27)(23)cos85

    HP² = 729 + 529 - 108.25

    HP² = 1149.8

    HP = 33.9

    sinH/23 = sin85/33.9

    sinH = 23sin85/33.9

    sinH = 0.675

        H = 42.52

    P = 180 - 42.52 - 85

   P = 52.48

3) xz² = 12² + 29² - 2(12)(29)cos99

   xz² = 144 + 841 + 108.9

   xz² = 1093.9

   xz = 33

   sinx/12 = sin99/33

   sinx = 12sin99/33

   sinx = 0.36

       x = 21

   Z = 180 - 99 - 21

   Z = 60

4) cosP = (30² - 18² - 17²)/ -2(18)(17)

   cosP = 287/ -612

   cosP = -0.46

        P = 118

   sinQ/18 = sin118/30

   sinQ = 18 sin118/30

   sinQ = 0.529

        Q = 32°

R = 180 - 32 - 118

R = 30°

5) KH² = 9² + 20.1² - 2(9)(20.1)cos 88.4

   KH² = 81 + 404.01 - 10.1

   KH² = 474.9

   KH = 21.8

  sinH/9 = sin88.4/21.8

  sinH = 9sin88.4/21.8

  sinH = 0.412

      H = 24.37°

   K = 180 - 24.37 - 88.4

   K = 67.23°

6)   cos R = (6² - 9² - 14²)/-2(9)(14)

     cos R = -241/-252

     cosR = 0.956

           R = 17

     sinS/9 = sin17/6

     sinS = 9sin17/6

     sinS = 0.438

         S = 26°

     T = 180 - 26 - 14

     T = 140°

7)    cos C = (23.6² - 16.2² - 12.3²)/-2(16.2)(12.3)

      cosC = 143.23/-398.52

      cosC = -0.359

           C = 111°

      sinB/16.2 = sin111/23.6

      sinB = 16.2sin111/23.6

      sinB = 0.64

          B = 39.9

      A = 180 - 39.9 - 111

     A = 29.1°

8) cos B = (28² - 17² - 15²)/-2(15)(17)

    cos B = 270/-510

    cosB = -0,529

          B = 122°

sinA/17 = sin122/28

sinA = 17sin122/28

sinA = 0.514

    A = 31°

C = 180 -122 - 31

C = 27°