Three-point charges are arranged on a line. Charge q3 = +5.00nC and is at the origin. Charge q2 = -3.00 nC and is at x = 5.00 cm . Charge q1 is at x = 2.50 cm.What is q1 (magnitude and sign) if the net force on q3 is zero?

Respuesta :

Answer:

Explanation:

Given

Charge [tex]q_3=+5\ nC[/tex] is placed at origin

Charge [tex]q_2=-3\ nC[/tex] is placed at [tex]x=5\ cm[/tex]

Charge [tex]q_1[/tex] is Placed at [tex]x=2.5\ cm[/tex]

charge [tex]q_1[/tex] must be positive so as to balance the force on charge [tex]q_3[/tex]

Force on [tex]q_3[/tex] due to [tex]q_1[/tex] is

[tex]F_{31}=\frac{kq_1q_3}{r^2}[/tex]

here [tex]r=2.5\ cm[/tex]

[tex]F_{31}=\frac{kq_1q_3}{(2.5)^2}[/tex]

Force on [tex]q_3[/tex] due to [tex]q_2[/tex] is

[tex]F_{32}=\frac{kq_3q_2}{r^2}[/tex]

here [tex]r=5\ cm[/tex]

[tex]F_{32}=\frac{kq_3q_2}{(5)^2}[/tex]

[tex]F_{31}=F_{32}[/tex]

[tex]\frac{kq_1q_3}{(2.5)^2}=\frac{kq_3q_2}{(5)^2}[/tex]

[tex]q_1=q_2(\frac{2.5}{5})^2[/tex]

[tex]q_1=3\times (\frac{2.5}{5})^2[/tex]

[tex]q_1=3\times \frac{1}{4}[/tex]

[tex]q_1=0.75\ nC[/tex]

                                                                   

Lanuel

The magnitude and sign of charge [tex]q_1[/tex] is equal to +0.75 nC.

Given the following data:

  • Charge [tex]q_3[/tex] = +5.00 nC.
  • Radius of [tex]q_3[/tex] = origin.
  • Charge [tex]q_2[/tex] = -3.00 nC.
  • Radius of [tex]q_2[/tex] = 5.00 cm.
  • Radius of [tex]q_1[/tex] = 2.50 cm.

How to calculate electrostatic force.

Mathematically, the electrostatic force between two (2) charges is given by this formula:

[tex]F = k\frac{q_1q_2}{r^2}[/tex]

Where:

  • q represent the charge.
  • r is the distance between two charges.
  • k is Coulomb's constant.

The electrostatic force between charges 2 and 3 is given by:

[tex]F_{23} = k\frac{q_2q_3}{r^2_{23}}[/tex]    .....equation 1.

The electrostatic force between charges 1 and 3 is given by:

[tex]F_{13} = k\frac{q_1q_3}{r^2_{13}}[/tex]   .....equation 2.

Since [tex]F_{23}[/tex] is pointing in the +x direction, [tex]F_{13}[/tex]  has to point in the -x direction and as such charge [tex]q_1[/tex] must have a positive charge.

Equating eqn. 2 and eqn. 1, we have:

[tex]k\frac{q_2q_3}{r^2_{23}}= k\frac{q_1q_3}{r^2_{13}}\\\\q_1=q_2(\frac{r^2_{13}}{r^2_{23}} )[/tex]

Substituting the given parameters into the equation, we have;

[tex]q_1=3 \times \frac{2.50^2}{5.00^2} \\\\q_1=3 \times \frac{6.25}{25}\\\\q_1=3 \times 0.25[/tex]

Charge 1 = +0.75 nC.

Read more on charges here: brainly.com/question/4313738