Rewrite each of the following sentences using logical connectives. Assume that each symbol!, x₀, n, x, B represents some fixed object.
(a) If f has a relative minimum at x₀ and if f is differentiable at x₀, then f′(x₀)=0..,
(b) If n is prime, then n = 2 or n is odd.,
(c) R is symmetric and transitive whenever R is irreflexive.,
(d) B is square and not invertible whenever det B = 0.,
(e) f has a critical point at x₀ iff f '(x₀) = 0 or f'(x₀) does not exist.,
(f) 2 < n - 6 is a necessary condition for 2n < 4 or n > 4.,
(g) 6 ≥ n - 3 only if n > 4 or n > 10.,
(h) x is Cauchy implies x is convergent.,
( i) f is continuous at x₀ whenever [tex]lim_{x \rightarrow x_0}[/tex] f(x) = f(x₀).,
(j) If f is differentiable at x₀ and f is increasing at x₀, then f'(x₀) > 0.

Respuesta :

Answer:

a) [tex](f\ has\ a\ relative \ minimum \ at\ x_{0} )[/tex] ∧ [tex](f\ is\ differenciable\ at\ x_{0} )[/tex] ⇒ [tex]f^{'} (x_{0} )=0[/tex].

b) [tex](n\ is\ prime)[/tex] ⇒ [tex](n=2)[/tex] ∨ [tex](n\ is \ odd)[/tex].

c) [tex]R\ is \ irreflexive\[/tex] ⇒ [tex](R\ is\ symmetric)[/tex] ∧ [tex](R\ is\ transitive)[/tex].

d) [tex]detB=0[/tex] ⇒ [tex](B \ is\ square)[/tex] ∧ [tex](B\ is\ not\ invertible)[/tex].

e) [tex]f\ has\ a\ critical\ point\ at \ x_{0}[/tex] ⇔ [tex](f^{'}(x_{0})=0)[/tex] ∨ [tex]() \ f^{'}(x_{0}) \ does\ not\ exist[/tex].

f) [tex]2n<4[/tex] ∨ [tex]n>4[/tex] ⇒ [tex]2<n-6[/tex].

g) [tex]6\geq n-3[/tex] ⇔ [tex]n>4[/tex] ∨ [tex]n>10[/tex].

h) [tex]x \ is \ cauchy[/tex] ⇒ [tex]x\ is\ convergent[/tex].

i) [tex]\lim_{x \to \ x_{0}} f(x)=f(x_{0})[/tex] ⇒ [tex]f\ is\ continous\ at \ x_{0}[/tex].

j) [tex](f\ is\ diferenciable\ at\ x_{0})[/tex] ∧ [tex](f\ is\ increasing\ at\ x_{0})[/tex] ⇒ [tex]f^{'}(x_{0})>0[/tex].