Answer:
The 13.76% of propionic acid is in the dissociated form in the solution
Explanation:
Concentration of propionic acid = c = 0.61mM = [tex]0.61\times 10^{-3}M[/tex]
[tex]mM=10^{-3}M[/tex]
Degree of dissociation = α
[tex]C2H5CO2H\rightleftharpoons C2H5COO^-+H^+[/tex]
At initial
c 0 0
At equilibrium
c - cα cα cα
The value of dissociation constant of propionic acid = [tex]K_a=1.34\times 10^{-5}[/tex]
The expression of dissociation constant of propionic acid is given by :
[tex]K_a=\frac{c\times alpha c\times \alpha}{c(1-\alpha )}[/tex]
[tex]K_a=\frac{c\alpha ^2}{(1-\alpha )}[/tex]
[tex]1.34\times 10^{-5}=\frac{0.61\times 10^{-3}M\times \alpha ^2}{(1-\alpha )}[/tex]
Solving the equation for [tex]\alpha [/tex]:
[tex]\alpha =0.1376[/tex]
[tex]\alpha=\frac{0.1376}{1}\times 100=13.76\%[/tex]
The 13.76% of propionic acid is in the dissociated form in the solution