Answer:
[tex]T_{average} =12026ns[/tex]
Explanation:
Given Information:
[tex]T_{cache}=20 ns[/tex]
[tex]T_{main}=60ns[/tex]
[tex]T_{disk} =12ms=12,000,000ns[/tex]
[tex]hit_{cache} =0.9[/tex]
[tex]miss_{cache} =1-0.9=0.10[/tex]
[tex]hit_{main} =0.99[/tex]
[tex]miss_{main} =1-0.99=0.01[/tex]
There are 3 possible cases
1. Location of reference word is in cache
[tex]T_{cache}*hit_{cache} =20*0.9=18ns[/tex]
2. Location of reference word is not in cache but in main memory
[tex](T_{cache}+T_{main})*(miss_{cache}*hit_{main}) =(20+60)*(0.10*0.99)=7.92ns[/tex]
3. Location of reference word is neither in cache nor in main memory
[tex](T_{cache}+T_{main}+T_{disk})*(miss_{cache}*miss_{main})[/tex]
[tex](20+60+12,000,000)*(0.10*0.01)=12000.08 ns[/tex]
The average time required to access a referenced word on this system is simply the sum of above 3 cases
[tex]T_{average} =18+7.92+12000.08=12026ns[/tex]