Respuesta :

Answer:

The roots are

[tex]x=-1+i\frac{\sqrt{10}}{2}[/tex]

[tex]x=-1-i\frac{\sqrt{10}}{2}[/tex]

Step-by-step explanation:

we have

[tex]2x^2+4x+7[/tex]

To find the roots equate the equation to zero

so

[tex]2x^2+4x+7=0[/tex]

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]2x^2+4x+7=0[/tex]

so

[tex]a=2\\b=4\\c=7[/tex]

substitute in the formula

[tex]x=\frac{-4\pm\sqrt{4^{2}-4(2)(7)}} {2(2)}[/tex]

[tex]x=\frac{-4\pm\sqrt{-40}} {4}[/tex]

Remember that

[tex]i=\sqrt{-1}[/tex]

so

[tex]x=\frac{-4\pmi\sqrt{40}} {4}[/tex]

[tex]x=\frac{-4\pm2i\sqrt{10}} {4}[/tex]

simplify

[tex]x=\frac{-2\pm i\sqrt{10}} {2}[/tex]

therefore

The roots are

[tex]x=\frac{-2+i\sqrt{10}} {2}=-1+i\frac{\sqrt{10}}{2}[/tex]

[tex]x=\frac{-2-i\sqrt{10}} {2}=-1-i\frac{\sqrt{10}}{2}[/tex]