Joe, Megan, and Santana are salespeople. Their sales manager has 18 accounts and must assign six accounts to each of them. In how many ways can this be done?

Respuesta :

frika

Answer:

[tex]C^{18}_6\cdot C^{12}_6=17,153,136[/tex]

Step-by-step explanation:

Joe, Megan, and Santana are salespeople. Their sales manager has 18 accounts and must assign six accounts to each of them.

1. Sales manager can assign first six accounts in

[tex]C^{18}_6=\dfrac{18!}{6!(18-6)!}=\dfrac{12!\cdot 13\cdot 14\cdot 15\cdot 16\cdot 17\cdot 18}{2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 12!}=\dfrac{13\cdot 14\cdot 15\cdot 16\cdot 17\cdot 18}{2\cdot 3\cdot 4\cdot 5\cdot 6}=18,564[/tex]

different ways.

2. Then 12 accounts left and he can assign the next 6 accounts in

[tex]C^{12}_6=\dfrac{12!}{6!\cdot (12-6)!}=\dfrac{6!\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12}{6!\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6}=\dfrac{7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12}{2\cdot 3\cdot 4\cdot 5\cdot 6}=924[/tex]

different ways

3. Last 6 accounts he will assign in 1 way.

Hence, the total number of ways is

[tex]C^{18}_6\cdot C^{12}_6=18,564\cdot 924=17,153,136[/tex]