Respuesta :

Option B:

False

Solution:

Given GF = 10, FH = 6, GH = [tex]\sqrt{63}[/tex]

To verify that ΔFGH is right triangle or not:

Pythagoras theorem:

If the square of the hypotenuse is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.

Using Pythagoras theorem,

[tex]\text{Hypotenuse}^2={GF}^2[/tex]

                    = 10²

                    = 100

[tex]\text {(sum of the sides)}^2[/tex]= [tex]GH^2+FH^2[/tex]

                            = [tex]6^2+(\sqrt{63} )^2[/tex]

                            = 36 + 63

                            = 99

100 ≠ 99

[tex]GF^2\neq GH^2+FH^2[/tex]

Hence ΔFGH is not a right triangle.

The given statement is false.

Option B is the correct answer.

Answer:false

Step-by-step explanation:a p e x