AFGH is a right triangle.
A. True
B. False

Option B:
False
Solution:
Given GF = 10, FH = 6, GH = [tex]\sqrt{63}[/tex]
To verify that ΔFGH is right triangle or not:
Pythagoras theorem:
If the square of the hypotenuse is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.
Using Pythagoras theorem,
[tex]\text{Hypotenuse}^2={GF}^2[/tex]
= 10²
= 100
[tex]\text {(sum of the sides)}^2[/tex]= [tex]GH^2+FH^2[/tex]
= [tex]6^2+(\sqrt{63} )^2[/tex]
= 36 + 63
= 99
100 ≠ 99
[tex]GF^2\neq GH^2+FH^2[/tex]
Hence ΔFGH is not a right triangle.
The given statement is false.
Option B is the correct answer.