Answer:
[tex]\sqrt[5]{x^{4} }[/tex]
Step-by-step explanation:
The fifth root of x = [tex]\sqrt[5]{x}[/tex]
We have to multiply [tex]\sqrt[5]{x}[/tex] itself by 4 times.
Therefore,
[tex]\sqrt[5]{x} .\sqrt[5]{x} .\sqrt[5]{x} .\sqrt[5]{x}[/tex]
= [tex]\sqrt[5]{x^{4} }[/tex]
When we multiply [tex]\sqrt[5]{x} .\sqrt[5]{x} .\sqrt[5]{x} .\sqrt[5]{x}[/tex] = [tex]\sqrt[5]{x^{4} }[/tex]
It can be read as " fifth root of x to the power 4".