The periodicity of function is [tex]\frac{2 \pi}{5}[/tex]
Solution:
Given that we have to find the period of function
Given function is:
[tex]y = -4 + cos(5x+3)[/tex]
Use the below formula:
[tex]\mathrm{Periodicity\:of\:}a\cdot \cos \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\cos \left(x\right)}{|b|}[/tex]
Thus,
[tex]Peridocity\ of\ cos(5x + 3) - 4 = \frac{\text{periodicity of cos(x)}}{5}[/tex]
Now find the periodicity of cos(x)
We know that,
periodicity of cos(x) = [tex]2 \pi[/tex]
Therefore,
[tex]Peridocity\ of\ cos(5x + 3) - 4 = \frac{2 \pi}{5}[/tex]
Thus the periodicity of function is [tex]\frac{2 \pi}{5}[/tex]