Assume that X is normally distributed with a mean of 20 and a standard deviation of 2. Determine the following. (a) P(X 24) (b) P(X 18) (c) P(18 X 22) (d) P(14 X 26) (e) P(16 X 20) (f) P(20 X 26)

Respuesta :

Answer:

a) P( X < 24 ) =  0.9772

b) P ( X > 18 ) =0.8413

c) P ( 14 < X < 26) = 0.9973

d)  P ( 14 < X < 26)  = 0.9973

e) P ( 16 < X < 20)  = 0.4772

f) P ( 20 < X < 26)  =  0.4987

Step-by-step explanation:

Given:

- Mean of the distribution u = 20

- standard deviation sigma = 2

Find:

a. P ( X  < 24 )

b. P ( X  > 18 )

c. P ( 18 < X  < 22 )

d. P ( 14 < X  < 26 )

e. P ( 16 < X  < 20 )

f. P ( 20 < X  < 26 )

Solution:

- We will declare a random variable X that follows a normal distribution

                                   X ~ N ( 20 , 2 )

- After defining our variable X follows a normal distribution. We can compute the probabilities as follows:

a) P ( X < 24 ) ?

- Compute the Z-score value as follows:

                                   Z = (24 - 20) / 2 = 2

- Now use the Z-score tables and look for z = 2:

                                   P( X < 24 ) = P ( Z < 2) = 0.9772

b) P ( X > 18 ) ?

- Compute the Z-score values as follows:

                                   Z = (18 - 20) / 2 = -1

- Now use the Z-score tables and look for Z = -1:

                    P ( X > 18 ) = P ( Z > -1) = 0.8413

c) P ( 18 < X < 22) ?

- Compute the Z-score values as follows:

                                   Z = (18 - 20) / 2 = -1

                                   Z = (22 - 20) / 2 = 1

- Now use the Z-score tables and look for z = -1 and z = 1:

                   P ( 18 < X < 22)  = P ( -1 < Z < 1) = 0.6827

d) P ( 14 < X < 26) ?

- Compute the Z-score values as follows:

                                   Z = (14 - 20) / 2 = -3

                                   Z = (26 - 20) / 2 = 3

- Now use the Z-score tables and look for z = -3 and z = 3:

                   P ( 14 < X < 26)  = P ( -3 < Z < 3) = 0.9973

e) P ( 16 < X < 20) ?

- Compute the Z-score values as follows:

                                   Z = (16 - 20) / 2 = -2

                                   Z = (20 - 20) / 2 = 0

- Now use the Z-score tables and look for z = -2 and z = 0:

                   P ( 16 < X < 20)  = P ( -2 < Z < 0) = 0.4772

f) P ( 20 < X < 26) ?

- Compute the Z-score values as follows:

                                   Z = (26 - 20) / 2 = 3

                                   Z = (20 - 20) / 2 = 0

- Now use the Z-score tables and look for z = 0 and z = 3:

                   P ( 20 < X < 26)  = P ( 0 < Z < 3) = 0.4987