Find the indefinite integral. (Note: Solve by the simplest method—not all require integration by parts. Use C for the constant of integration.)

\int 9arctan x dx

\int 9 arctan x dx

Respuesta :

Answer:

∫▒〖arctan⁡(x).1 dx=arctan⁡(x).x〗-1/2  ln⁡(1+x^2 )+C

Step-by-step explanation:

∫▒〖1st .2nd dx=1st∫▒〖2nd dx〗-∫▒〖(derivative of 1st) dx∫▒〖2nd dx〗〗〗

Let 1st=arctan⁡(x)

And 2nd=1

∫▒〖arctan⁡(x).1 dx=arctan⁡(x) ∫▒〖1 dx〗-∫▒〖(derivative of arctan(x))dx∫▒〖1 dx〗〗〗

As we know that  

derivative of arctan(x)=1/(1+x^2 )

∫▒〖1 dx〗=x

So  

∫▒〖arctan⁡(x).1 dx=arctan⁡(x).x〗-∫▒〖(1/(1+x^2 ))dx.x〗…………Eq1

Let’s solve ∫▒(1/(1+x^2 ))dx by substitution now  

Let 1+x^2=u

du=2xdx

Multiply and divide ∫▒〖(1/(1+x^2 ))dx.x〗 by 2 we get

1/2 ∫▒〖(2/(1+x^2 ))dx.x〗=1/2 ∫▒(2xdx/u)  

1/2 ∫▒(2xdx/u) =1/2 ∫▒(du/u)  

1/2 ∫▒(2xdx/u) =1/2  ln⁡(u)+C

1/2 ∫▒(2xdx/u) =1/2  ln⁡(1+x^2 )+C

Putting values in Eq1 we get

∫▒〖arctan⁡(x).1 dx=arctan⁡(x).x〗-1/2  ln⁡(1+x^2 )+C  (required soultion)

Answer:

[tex]\int{9 \arctan{\left(x \right)} d x} = 9 x \arctan{\left(x \right)} - \frac{9}{2} \ln{\left(\left|{x^{2} + 1}\right| \right)}+C[/tex]

Step-by-step explanation:

To find [tex]\int \:9\arctan \left(x\right)dx[/tex] you must:

Step 1: Apply the constant multiple rule [tex]\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx[/tex] with c = 9 and [tex]f{\left(x \right)} = \arctan {\left(x \right)}[/tex]

[tex]\int{9 \arctan }{\left(x \right)} d x}} =9 \int{\arctan {\left(x \right)} d x}[/tex]

Step 2: For the integral [tex]\int{\arctan}{\left(x \right)} d x}[/tex], use integration by parts [tex]\int {u} {dv} ={u}{v} - \int {v}{du}[/tex]

Let [tex]{u}={\arctan}{\left(x \right)}[/tex] and [tex]dv=dx[/tex].

Then

[tex]{du}=\left({\arctan}{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x^{2} + 1}[/tex] and [tex]{v}=\int{1 d x}=x[/tex]

The integral can be rewritten as

[tex]9 {\int{\arctan}{\left(x \right)} d x}}=9 {\left(\arctan{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x^{2} + 1} d x}\right)}=9{\left(x\arctan{\left(x \right)} - \int{\frac{x}{x^{2} + 1} d x}\right)}[/tex]

Let [tex]u=x^{2} + 1[/tex]

Then [tex]du=\left(x^{2} + 1\right)^{\prime }dx = 2 x dx[/tex] and we have that [tex]x dx = \frac{du}{2}[/tex].

Therefore,

[tex]9 x \arctan{\left(x \right)} - 9 {\int{\frac{x}{x^{2} + 1} d x}} = 9 x \arctan{\left(x \right)} - 9 {\int{\frac{1}{2 u} d u}}[/tex]

[tex]9 x \arctan{\left(x \right)} - 9 {\int{\frac{1}{2 u} d u}} = 9 x \arctan{\left(x \right)} - 9 {\left(\frac{1}{2} \int{\frac{1}{u} d u}\right)}[/tex]

Step 3: The integral of [tex]\frac{1}{u}[/tex] is [tex]\int{\frac{1}{u} d u} = \ln{\left(u \right)}[/tex]

[tex]x \arctan{\left(x \right)} - \frac{9}{2} {\int{\frac{1}{u} d u}} = 9 x \arctan{\left(x \right)} - \frac{9}{2} {\ln{\left(u \right)}}[/tex]

Step 4: Recall that [tex]u=x^{2} + 1[/tex]

[tex]9 x \arctan{\left(x \right)} - \frac{9}{2} \ln{\left({u} \right)} = 9 x \arctan{\left(x \right)} - \frac{9}{2} \ln{\left({\left(x^{2} + 1\right)} \right)}[/tex]

Therefore,

[tex]\int{9 \arctan{\left(x \right)} d x} = 9 x \arctan{\left(x \right)} - \frac{9}{2} \ln{\left(\left|{x^{2} + 1}\right| \right)}[/tex]

Step 5: Add the constant of integration

[tex]\int{9 \arctan{\left(x \right)} d x} = 9 x \arctan{\left(x \right)} - \frac{9}{2} \ln{\left(\left|{x^{2} + 1}\right| \right)}+C[/tex]