Respuesta :
Answer:
(a) [tex]U=405J[/tex]
(b) [tex]Q=0.09C[/tex]
Explanation:
(a) The potential energy stored in a capacitor is given by the expression:
[tex]U=\frac{QV}{2}[/tex]
Q is the stored charge and V the potential difference between capacitor plates. In a capacitor, we have:
[tex]Q=CV[/tex]
Replacing this in the energy equation:
[tex]U=\frac{CV^2}{2}\\U=\frac{10*10^{-6}F(9*10^3V)^2}{2}\\U=405J[/tex]
(b) Using the energy expression and solving for Q:
[tex]U=\frac{QV}{2}\\Q=\frac{2U}{V}\\Q=\frac{2(405J)}{9*10^3V}\\\\Q=0.09C[/tex]
(a) The energy stored is "405 J".
(b) Amount of stored charge is "0.09 C".
(a)
As we know, the stored P.E in capacitor given by:
→ [tex]U= \frac{QV}{2}[/tex]
or,
→ [tex]Q=CV[/tex]
then,
→ [tex]U= \frac{CV^2}{2}[/tex]
By substituting the values, we get
[tex]= \frac{10\times 10^{-6} F(9\times 10^3)^2}{2}[/tex]
[tex]= 405 \ J[/tex]
(b)
By using the energy expression, we get
→ [tex]U = \frac{QV}{2}[/tex]
or,
→ [tex]Q=\frac{2U}{V}[/tex]
[tex]= \frac{2(405)}{9\times 10^3}[/tex]
[tex]= 0.09 \ C[/tex]
Thus the above answers are correct.
Learn more:
https://brainly.com/question/14567619