A child on a sled starts from rest at the top of a 15° slope. If the trip to the bottom takes 10.2 s how long is the slope? Assume that frictional forces may be neglected.

Respuesta :

Answer:

[tex]Length_{slope}=131.945m[/tex]

Explanation:

Given data

Angle α=15°

time taken t=10.2 s

To find

Length of slope

Solution

From ΣF=ma

[tex]m*g*Sin(\alpha )=ma\\g*Sin(\alpha )=a\\where\\Speed_{at-bottom}=0+g*Sin(\alpha )t\\Speed_{at-bottom}=(9.8m/s^{2} )Sin(15^{o})(10.2s)\\Speed_{at-bottom}=4.449m/s\\ Now\\Length_{slope}=(1/2)at^{2}\\ Length_{slope}=(1/2)gSin(\alpha )t^{2}\\Length_{slope}=(1/2)(9.8m/s^{2})Sin(15^{o})(10.2)^{2}\\Length_{slope}=131.945m[/tex]