Answer: The cross-sectional area of the cylindrical rod is [tex]2.01\times 10^{-6}m^2[/tex]
Explanation:
We are given a cylindrical rod whose cross-sectional area will be in the form of circle.
To calculate the area of circle, we use the equation:
[tex]\text{Area}=\pi r^2[/tex]
where,
r = radius of the rod = [tex]\frac{d}{2}=\frac{1.6mm}{2}=0.8mm=0.8\times 10^{-3}m[/tex] (Conversion factor: 1 m = 1000 mm)
Putting values in above equation, we get:
[tex]\text{Area}=3.14\times (0.8\times 10^{-3})^2\\\\\text{Area}=2.01\times 10^{-6}m^2[/tex]
Hence, the cross-sectional area of the cylindrical rod is [tex]2.01\times 10^{-6}m^2[/tex]