A fox is 3.2 m from a 0.5 m tall wall. If it leaps from the ground towards the wall with an initial velocity of 12.0 m/s at an angle of 18.9° above the horizontal, how high off the ground will the fox be when it reaches the wall?

Respuesta :

Answer:

0.7 m.

Explanation:

We are given that

Initial velocity of fox,v=12 m/s

[tex]\theta=18.9^{\circ}[/tex]

Distance of fox from the ball=3.2 m

Horizontal component of velocity=[tex]v_x=vcos\theta=12\times cos18.9=11.35m/s[/tex]

Vertical component of velocity=[tex]v_y=vsin\theta=12sin18.9=3.89m/s[/tex]

Time taken by fox to travel in horizontal direction=[tex]\frac{distance}{horizontal\;velocity}=\frac{3.2}{11.35}=0.28 s[/tex]

Time taken by box to the wall=0.28 s

Formula:

[tex]s=vsin\theta t-\frac{1}{2}gt^2[/tex]

Where [tex]g=9.8m/s^2[/tex]

Using the formula

[tex]s=3.89(0.28)-\frac{1}{2}(9.8)(0.28)^2[/tex]

Takine g negative because fox going against to gravity.

[tex]s=0.7 m[/tex]

Hence, the fox will reach upto height 0.7 m when it reaches the wall

Answer:

 s = 0.733 m

Explanation:

given,

horizontal distance = 3.5 m

height of the wall,h = 0.5 m

initial velocity, v= 12 m/s

angle with horizontal, θ = 18.9°

Maximum height fox will reach = ?

horizontal velocity of the fox = 12 cos 18.9° = 11.35 m/s

time taken to cover horizontal distance

[tex]t = \dfrac{h}{v_x}[/tex]

[tex]t = \dfrac{3.5}{11.35}[/tex]

     t = 0.308 s

vertical velocity = 12 sin 18.9°

                           = 3.89 m/s

vertical distance travel by box

 [tex]s = u t + \dfrac{1}{2}gt^2[/tex]

 [tex]s =3.89\times 0.308 - \dfrac{1}{2}\times 9.8 \times 0.308^2[/tex]

 s = 0.733 m

Hence, the vertical height travel by the fox is equal to  s = 0.733 m