Respuesta :
Answer:
p = 1
Step-by-step explanation:
Given data:
X = 2y + 5
therefore Y = X/2 - 5/2
Given co-ordinates (m,n) and (m+2,n+p)
Equation of a straight line is represented by Y = mX + C where m is gradient and c is y intercept
For the given equation y intercept is at (0,-5/2) and gradient is 1/2
Given point (X₁ , Y₁) and (X,Y)
Gradient = (Y - Y₁)/(X-X₁)
Finding gradient using (m,n) and (m+2,n+p)
1/2=( n+p - n)/m+2-m)
1/2 = p/2 (Multiplying both sides by 2)
p = 1
Answer:
1
Step-by-step explanation:
the equation of the line is given as x=2y +5.................................(1)
therefore, 2y=x-5
y=[tex]\frac{x}{2}[/tex]-[tex]\frac{5}{2}[/tex]............................................(2)
recall, equation of any line is given as
y=mx + c.......................(3)
where m=slope= y₂ - y₁ / x₂ -x₁...............(4)
∴ by comparison of equations 2 and 3
m=1/2
(x₁,y₁)= (m,n)
(x₂,y₂)=(m+2,n+p)
therefore, from equation 4
[tex]\frac{1}{2}[/tex]=[tex]\frac{n+p-n}{m+2-m}[/tex]
collecting like terms,
[tex]\frac{1}{2}[/tex]=[tex]\frac{n-n+p}{m-m+2}[/tex]
[tex]\frac{1}{2}[/tex]=[tex]\frac{0+p}{0+2}[/tex]
[tex]\frac{1}{2}[/tex]=[tex]\frac{p}{2}[/tex]
∴p=1