Respuesta :
Answer:
The charge inside the cube is null.
Explanation:
If we apply the gauss theorem with a cubical gaussian surface of the size of the cube:
[tex]\displaystyle\oint_{S} \vec{E}\,\vec{ds}=\frac{q_{in}}{\varepsilon_{0}}[/tex]
If we consider than the direction of the electric field is [tex]\vec{E}=E_0\hat{x}[/tex], we can solve the problem differentiating the integral for each face of the cube:
[tex]\displaystyle\oint_{S} \vec{E}\,\vec{ds}=\displaystyle\int_{S_1} \vec{E}\,\vec{ds_1}+\displaystyle\int_{S_2} \vec{E}\,\vec{ds_2}+\displaystyle\int_{S_3} \vec{E}\,\vec{ds_3}+\displaystyle\int_{S_4} \vec{E}\,\vec{ds_4}+\displaystyle\int_{S_5} \vec{E}\,\vec{ds_5}+\displaystyle\int_{S_6} \vec{E}\,\vec{ds_6}[/tex]
[tex]\displaystyle\oint_{S} \vec{E}\,\vec{ds}=\displaystyle\int_{S_1} E_0\hat{x}\,\hat{x}ds_1+\displaystyle\int_{S_2} E_0\hat{x}\,\hat{-x}ds_2+\displaystyle\int_{S_3} E_0\hat{x}\,\hat{y}ds_3+\displaystyle\int_{S_4} E_0\hat{x}\,\hat{-y}ds_4+\displaystyle\int_{S_5} E_0\hat{x}\,\hat{z}ds_5+\displaystyle\int_{S_6} E_0\hat{x}\,\hat{-z}ds_6[/tex]
E₀ is a constant and each surface is equal to each other, so: [tex]S_1=S_2=S_i=S[/tex]
Therefore:
[tex]\displaystyle\oint_{S} \vec{E}\,\vec{ds}=E_0\displaystyle\int_{S_1} \,ds_1+E_0\displaystyle\int_{S_2} -1\,ds_2+0+0+0+0=E_0S-E_0S=0[/tex]
[tex]\displaystyle\oint_{S} \vec{E}\,\vec{ds}=0=\frac{q_0}{\varepsilon_0} \longleftrightarrow q_0=0c[/tex]