Answer:
Explanation:
Given
Charge of first Particle [tex]q_1=+12\ \mu C[/tex]
Charge of second Particle [tex]q_2=-8\ \mu C[/tex]
distance between them [tex]d=4\ cm[/tex]
[tex]k=9\times 10^{9}[/tex]
magnetic field due to first charge at mid-way between two charged particles is
[tex]E_1=\frac{kq_1}{r^2}[/tex]
[tex]r=\frac{d}{2}=\frac{4}{2}=2\ cm[/tex]
[tex]E_1=\frac{9\times 10^9\times 12\times 10^{-6}}{(2\times 10^{-2})^2}[/tex]
[tex]E_1=27\times 10^7\ N/C[/tex] (away from it)
Electric field due to [tex]q_2=-8\ \mu C[/tex]
[tex]E_2=\frac{kq_2}{r^2}[/tex]
[tex]E_2=-\frac{9\times 10^9\times 8\times 10^{-6}}{(2\times 10^{-2})^2}[/tex]
[tex]E_2=-18\times 10^7\ N/C[/tex](towards it)
[tex]E_{net}=E_1+E_2[/tex]
[tex]E_{net}=9\times 10^7\ N/C[/tex](away from first charge)