A 7 kg object attached to a horizontal string moves with constant speed in a circle on a frictionless horizontal surface. The kinetic energy of the object is 36 J and the tension in the string is 326 N. Find the radius of the circle. Answer in units of m.

Respuesta :

Answer:

Explanation:

Given

mass of object [tex]m=7 kg[/tex]

kinetic Energy [tex]k=36\ J[/tex]

Tension in string [tex]T=326\ N[/tex]

mass is moving in a horizontal circle so tension is providing the centripetal acceleration

therefore [tex]T=\frac{mv^2}{r}----1[/tex]

where r=radius of circle

kinetic energy of particle [tex]k=\frac{1}{2}mv^2----2[/tex]

divide 1 and 2 we get

[tex]\frac{T}{k}=\frac{\frac{mv^2}{r}}{\frac{1}{2}mv^2}[/tex]

[tex]\frac{T}{k}=\frac{2}{r}[/tex]

[tex]r=\frac{2k}{T}=\frac{2\times 36}{326}[/tex]

[tex]r=0.2208\ m[/tex]

   

The radius of the circle is 0.221 m

Radius of the circle

The radius of the circular path is determined from the following formula,

K.E = ¹/₂mv²

T = mv²/r

Where;

  • m is the mass
  • v is the velocity
  • r is the radius

[tex]\frac{T}{K.E} = \frac{mv^2}{0.5rmv^2} \\\\0.5Tr = K.E\\\\r = \frac{K.E}{0.5T} \\\\r = \frac{36}{0.5 \times 326} \\\\r = 0.221 \ m[/tex]

Thus, the radius of the circle is 0.221 m.

Learn more about tension in circle here: https://brainly.com/question/19904705