Respuesta :
Complete Question:
What is the domain and range of f(x) = |x + 6|?
domain: (negative infinite,infinite); range: f(x) (greater than or equal to) 0
domain: x (less then or equal to)-6; range: (negative infinite,infinite)
domain: x(greater than or equal to)-6 ; range: (negative infinite,infinite)
domain:(negative infinite,infinite) ; range: f(x) (less than or equal to) 0
Answer:
Domain: [tex](-\infty, \infty)[/tex] and range: [tex]f(x) \geq 0[/tex]
Step-by-step explanation:
Given:
f(x) = |x + 6|
The vertex of the function is the point (- 6, 0)
The domain is the interval [tex](-\infty, \infty)[/tex]. There are no restrictions on the value x can take. Therefore, the Domain is the set of All Real Numbers or {R}
The range is the interval [tex](0, \infty)[/tex]. So, [tex]f(x) \geq 0[/tex]. Because this is a linear transformation the Range is also the set of All Real Numbers or {R}
