What are the domain and range of f(x) = |x + 6|?
domain: (-00,00); range: f(x) > 0
domain: x 5-6; range: (-00,00)
domain: X2-6; range: (-0,00)
O domain: (-00,00); range: f(x) < 0

Respuesta :

Complete Question:

What is the domain and range of f(x) = |x + 6|?

domain: (negative infinite,infinite); range: f(x) (greater than or equal to) 0

domain: x (less then or equal to)-6; range: (negative infinite,infinite)

domain: x(greater than or equal to)-6 ; range: (negative infinite,infinite)

domain:(negative infinite,infinite) ; range: f(x) (less than or equal to) 0

Answer:

Domain: [tex](-\infty, \infty)[/tex] and range: [tex]f(x) \geq 0[/tex]

Step-by-step explanation:

Given:

                   f(x) = |x + 6|

The vertex of the function is the point (- 6, 0)

The domain is the interval [tex](-\infty, \infty)[/tex]. There are no restrictions on the value x can take. Therefore, the Domain is the set of All Real Numbers or {R}

The range is the interval [tex](0, \infty)[/tex]. So, [tex]f(x) \geq 0[/tex]. Because this is a linear transformation the Range is also the set of All Real Numbers or {R}

Ver imagen jacknjill

Answer:

a

Step-by-step explanation: