An important dimensionless parameter in certain types of fluid flow problems is the Froude number defined as V/√g.l where V is a velocity, the acceleration of gravity g, and a length l. Determine the value of the Froude number for v=10ft/s, g=32.2ft/s2, l=2 ft and Recalculate the Froude number using SI units for and Explain the significance of the results of these calculations.

Respuesta :

Answer:

1.24611

Explanation:

V = Velocity = 10 ft/s

L = Length = 2 ft

g = Acceleration due to gravity = 32.2 ft/s²

Froude number is given by

[tex]Fr=\dfrac{V}{\sqrt{gL}}\\\Rightarrow Fr=\dfrac{10}{\sqrt{32.2\times 2}}\\\Rightarrow Fr=1.24611[/tex]

Converting to SI units

[tex]10\ ft/s=10\times \dfrac{1}{3.281}[/tex]

[tex]32.2\ ft/s^2=32.2\times \dfrac{1}{3.281}[/tex]

[tex]2\ ft=2\times \dfrac{1}{3.281}[/tex]

[tex]Fr=\dfrac{V}{\sqrt{gL}}\\\Rightarrow Fr=\dfrac{10\times \dfrac{1}{3.281}}{\sqrt{32.2\times \dfrac{1}{3.281}\times 2\times \dfrac{1}{3.281}}}\\\Rightarrow Fr=1.24611[/tex]

The Froude number is 1.24611

The Froude number is equal. The Froude number is dimensionless as the units cancel each other. In order for this to happen the units used need to be consitent either imperial or SI.