Vector A has y-component Ay= +15.0 m . A makes an angle of 32.0 counterclockwise from the +y-axis. What is the x component of A? What is the magnitude of A?

Respuesta :

Answer:

x-component=-9.3 m

Magnitude of A=17.7m

Explanation:

We are given that

[tex]A_y=+15 m[/tex]

[tex]\theta=32^{\circ}[/tex]

We have to find the x-component of A and magnitude of A.

According to question

[tex]A_y=\mid A\mid cos\theta[/tex]

Substitute the values then we get

[tex]15=\mid A\mid cos32[/tex]

[tex]\mid A\mid =\frac{15}{cos32}=\frac{15}{0.848}[/tex]

[tex]\mid A\mid=17.7[/tex]m

[tex]tan\theta=\frac{perpendicular\;side}{Base}[/tex]

[tex]tan32=\frac{A_x}{A_y}=\frac{A_x}{15}[/tex]

[tex]0.62\times 15=A_x[/tex]

[tex]A_x=9.3[/tex]

The value of x-component of A is negative because the vector A lie  in second quadrant.

Hence, the x- component of A=-9.3 m

Ver imagen lublana

Answer:

The x component is 24.0 m and the magnitude of vector A is 28.30 m.

Explanation:

Given that,

Vertical component [tex]A_{y}=+15.0 m[/tex]

Angle = 32.0

We need to calculate the x component of A

Using formula of angle

[tex]\tan\theta=\dfrac{A_{y}}{A_{x}}[/tex]

[tex]A_{x}=\dfrac{A_{y}}{\tan\theta}[/tex]

Where, [tex]A_{y}[/tex] = vertical component

[tex]A_{x}[/tex] =  horizontal component

Put the value into the formula

[tex]A_{x}=\dfrac{15.0}{\tan32}[/tex]

[tex]A_{x}=24.0\ m[/tex]

We need to calculate the magnitude of A

Using formula of vector magnitude

[tex]|A|=\sqrt{(15.0)^2+(24.0)^2}[/tex]

[tex]|A|=28.30\ m[/tex]

Hence, The x component is 24.0 m and the magnitude of vector A is 28.30 m.