In the figure below, Sin 62 degrees - 17/c. Based on the figure, which of the following equations is also true ?
A. Cos 62 degrees = 17/c
B. Tan 62 degrees = c/17
C. Cos 28 degrees = 17/c
D. Sin 28 degrees = c/17

In the figure below Sin 62 degrees 17c Based on the figure which of the following equations is also true A Cos 62 degrees 17c B Tan 62 degrees c17 C Cos 28 degr class=

Respuesta :

Answer:

Therefore Based on the Figure only the third option i.e C. ic True

[tex]\cos 28\° = \dfrac{17}{c}[/tex]

Step-by-step explanation:

Given:

Let label the figure first such that

In Δ ABC , ∠C = 90° , ∠ B = 62°,

[tex]\sin 62\°=\dfrac{17}{c}[/tex]

AB = Hypotenuse = c

AC = 17

To Find:

True Statements

Solution:

Triangle sum property:

In a Triangle sum of the measures of all the angles of a triangle is 180°.

[tex]\angle A+\angle B+\angle C=180[/tex]

Substituting the values we get

[tex]\angle A +62+90=180\\\angle A=180-152=28\\\angle A=28\°[/tex]

In Right Angle Triangle ABC , Cosine Identity we have

[tex]\cos A = \dfrac{\textrm{side adjacent to angle A}}{Hypotenuse}\\[/tex]

Substituting the values we get

[tex]\cos 28\° = \dfrac{AC}{AB}=\dfrac{17}{c}\\\\\cos 28\°=\dfrac{17}{c}[/tex]

Here in this figure

[tex]\tan B = \dfrac{\textrm{side opposite to angle B}}{\textrm{side adjacent to angle B}}[/tex]

[tex]\sin A = \dfrac{\textrm{side opposite to angle A}}{Hypotenuse}\\[/tex]

Substituting we get

[tex]\tan 62\° = \dfrac{17}{BC}[/tex]

[tex]\cos 62\° = \dfrac{BC}{c}[/tex]

[tex]\sin 28\° = \dfrac{BC}{c}[/tex]

Therefore Based on the Figure only the third option i.e C. is True

[tex]\cos 28\° = \dfrac{17}{c}[/tex]

Ver imagen inchu420