What is the boiling point of a solution of 76 g of water dissolved in 500 mL of acetic acid, CH3COOH?
The density of CH3COOH is 1.049 g/cm3
123.09°C

99.0°C

119.13°C

100.13°C

142.5°C

Respuesta :

Answer:

127.3° C, (This is not a choice)

Explanation:

This is about the colligative property of boiling point.

ΔT = Kb . m . i

Where:

ΔT = T° boling of solution - T° boiling of pure solvent

Kb = Boiling constant

m = molal (mol/kg)

i = Van't Hoff factor (number of particles dissolved in solution)

Water is not a ionic compound, but we assume that i = 2

H₂O →  H⁺  +  OH⁻

T° boling of solution - 118.1°C =  0.52°C . m . 2

Mass of solvent =  Solvent volume / Solvent density

Mass of solvent = 500 mL / 1.049g/mL → 476.6 g

Mol of water are mass / molar mass

76 g / 18g/m = 4.22 moles

These moles are in 476.6 g

Mol / kg = molal → 4.22 m / 0.4766 kg = 8.85 m

T° boling of solution =  0.52°C . 8.85 m . 2 + 118.1°C =  127.3°C

Answer : The boiling point of a solution is, [tex]142.5^oC[/tex]

Explanation :

Formula used for Elevation in boiling point :

[tex]\Delta T_b=i\times k_b\times m[/tex]

or,

[tex]T_b-T^o_b=i\times k_b\times \frac{w_2\times 1000}{M_2\times w_1}[/tex]

where,

[tex]T_b[/tex] = boiling point of solution = ?

[tex]T^o_b[/tex] = boiling point of acetic acid = [tex]118^oC[/tex]

[tex]k_b[/tex] = boiling point constant  of acetic acid = [tex]2.93^oC/m[/tex]

m = molality

i = Van't Hoff factor = 1

[tex]w_2[/tex] = mass of solute (water) = 76 g

[tex]w_1[/tex] = mass of solvent (acetic acid) = [tex]Density\times Volume=1.049g/mL\times 500mL=524.5g[/tex]

[tex]M_2[/tex] = molar mass of solute (water) = 18 g/mol

Now put all the given values in the above formula, we get:

[tex](T_b-118)^oC=1\times (2.93^oC/m)\times \frac{(76g)\times 1000}{18g/mol\times (524.5g)}[/tex]

[tex]T_b=142.5^oC[/tex]

Therefore, the boiling point of a solution is, [tex]142.5^oC[/tex]