Answer:
P₂ = 206945 Pa
Explanation:
given,
gauge pressure = 3.8 atm
1 atm = 101325 Pa
speed of flow,v₁ = 0.62 m/s
diameter of pipe,d₁ = 5.3 cm
diameter of pipe after tapering, d₂ = 3 cm
height above the ground = 18 m
Using equation of continuity
A₁v₁ = A₂ v₂
[tex]\dfrac{\pi}{4}d_1^2 v_1 = \dfrac{\pi}{4}d_2^2 v_2[/tex]
[tex]v_2 = v_1(\dfrac{d_1^2}{d_2^2})[/tex]
[tex]v_2 =0.62\times (\dfrac{5.3^2}{3^2})[/tex]
v₂ = 1.94 m/s
using Bernoulli's equation
[tex]P_1 + \dfrac{\rho v_1^2}{2} = P_2 + \dfrac{\rho v_2^2}{2} +\rho g h[/tex]
[tex]P_2= P_1 + \dfrac{\rho}{2}(v_1^2 - v_2^2) -\rho g h[/tex]
[tex]P_2=3.8\times 101325 + \dfrac{1000}{2}(0.62^2 - 1.94^2) -1000\times 9.8\times 18[/tex]
P₂ = 206945 Pa
hence, pressure of the pipe at top floor is equal to P₂ = 206945 Pa