Respuesta :

Answer:

The Proof for 20.and 21 are below.

Step-by-step explanation:

20.

Given:

∠PTR ≅ ∠RSP

[tex]\overline{PT} \cong \overline{RS}[/tex]

To Prove:

ΔPQT ≅ ΔRQS

Proof:

In  ΔPQT  and ΔRQS

Statement                           Reason              

1. ∠PTR ≅ ∠RSP               1. Given

2.∠PQT ≅ ∠RQS              2.Vertical Opposite Angle Theorem

3. [tex]\overline{PT} \cong \overline{RS}[/tex]                3. Given

4. ΔPQT ≅ ΔRQS              4.By Angle-Angle-Side Congruence test..Proved

21.

Given:

[tex]\overline{PO} \cong \overline{SO}[/tex]

O is the Mid point of NT

∴ NO ≅ TO

To Prove:

∠N ≅ ∠T

Proof:

In  ΔPON  and ΔSOT

Statement                           Reason              

1. [tex]\overline{PO} \cong \overline{SO}[/tex]          1. Given

2.∠PON ≅ ∠SOT      2.Vertical Opposite Angle Theorem

3. [tex]\overline{NO} \cong \overline{TO}[/tex]        3. O is the Mid point of NT.

4. ΔPON ≅ ΔSOT              4.By Side-Angle-Side Congruence test.

5. ∠N ≅ ∠T                   5. Corresponding Parts of Congruent Triangles are Congruent....Proved