Respuesta :

Infinite number of solutions

Step-by step explanation:

Given system of equations are

[tex]y=\frac{1}{2} x+3[/tex] – – – – (1)

2y – x = 6 – – – – (2)

Equation (1) can be written as

⇒ [tex]y=\frac{1}{2} x+3[/tex]

Take LCM on both sides of the equation.

⇒ [tex]\frac{2}{2} y=\frac{1}{2} x+\frac{6}{2}[/tex]  

⇒ 2y = x + 6

x – 2y + 6 = 0 – – – – (3)

Equation (2) can be written as

⇒ 2y – x = 6

x – 2y + 6 = 0 – – – – (4)

[tex]a_{1}=1, b_{1}=-2, c_{1}=6 \text { and } a_{2}=1, b_{2}=-2, c_{2}=6[/tex]

We know that the system of equations have infinite number of solutions if

[tex]\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}[/tex]  

⇒ [tex]\frac{1}{1}=\frac{-2}{-2}=\frac{6}{6}[/tex]

Hence the given system have infinite number of solutions.