Answer:
Step-by-step explanation:
Co-ordinate of point P(0,0,0)
Q (-4,3,-1)
R (-4,2,-2)
S (-8,5,-3)
[tex]\vec{PQ}=<-4,3,-1>[/tex]
[tex]\vec{PS}=<-8,5,-3>[/tex]
Area of Parallelogram [tex]=|\vec{PQ}\times \vec{PS}|[/tex]
[tex]Area=\begin{vmatrix}i &j &k \\ -4 &3 &-1 \\ -8 &5 &-3 \end{vmatrix}[/tex]
[tex]A=|\hat{i}(-9+5)-\hat{j}(-12-8)+\hat{k}(-20+24)|[/tex]
[tex]A=|-4\hat{i}+20\hat{j}+4\hat{k}|[/tex]
[tex]A=\sqrt{(-4)^2+(20)^2+(4)^2}[/tex]
[tex]A=\sqrt{432}[/tex]
[tex]A=20.78\ unit^2[/tex]