Respuesta :

Answer:

Yes, It is a right triangle for the given vertices.

Step-by-step explanation:

Given:

Q(7, –10),

R(–3, 0),

S(9, –8)  

To Find:

determine whether is a rig ht triangle for the given vertices = ?

Solution:

QR=[tex]\sqrt{(-3-7)^2+(0-(-10))^2}[/tex]

QR=[tex]\sqrt{(-10)^2+(10)^2}[/tex]

QR=[tex]\sqrt{100+100}[/tex]

QR=[tex]\sqrt{200}[/tex]--------------------------(1)

QR=14.142136

RS=[tex]\sqrt{(9-(-3))^2+(-8-0)^2}[/tex]

RS=[tex]\sqrt{(12)^2+(-8)^2}[/tex]

RS=[tex]\sqrt{144+64}[/tex]

RS=[tex]\sqrt{208}[/tex]---------------------------(2)

RS=14.422205

QS=[tex]\sqrt{(7-9)^2+(-10-(-8))^2}[/tex]

QS=[tex]\sqrt{(-2)^2+(-2)^2}[/tex]

QS=[tex]\sqrt{4+4}[/tex]

QS=[tex]\sqrt{8}[/tex]-------------------------------------(3)

QS=2.828427

According to Pythagorean Theorem,

[tex]RS^2 = QR^ +QS^2[/tex]

Substituting the values,

[tex](\sqrt{208})^2 = (\sqrt{200})^2 +(\sqrt{8})^2[/tex]

[tex]208 = 200 +8[/tex]

208 = 208

Pythagorean theorem is satisfied. Hence it is a right triangle.

Ver imagen nandhini123