Answer:
[tex]\dfrac{T}{6}[/tex]
[tex]\dfrac{T}{12}[/tex]
Explanation:
Equation of motion is given by
[tex]x=Acos\omega t[/tex]
When,
[tex]x=\dfrac{A}{2}[/tex]
[tex]\dfrac{A}{2}=Acos\omega t\\\Rightarrow cos\omega t=\dfrac{1}{2}\\\Rightarrow \omega t=cos^{-1}\dfrac{1}{2}\\\Rightarrow \omega t=\dfrac{\pi}{3}\\\Rightarrow \dfrac{2\pi}{T}t=\dfrac{\pi}{3}\\\Rightarrow t=\dfrac{T}{6}[/tex]
Time taken is [tex]\dfrac{T}{6}[/tex]
Velocity is given by
[tex]v=\dfrac{dx}{dt}=-A\omega sin\omega t[/tex]
Speed becomes half which means,
[tex]sin\omega t=\dfrac{1}{2}\\\Rightarrow \omega t=\dfrac{\pi}{6}\\\Rightarrow \dfrac{2\pi}{T}t=\dfrac{\pi}{6}\\\Rightarrow t=\dfrac{T}{12}[/tex]
Time taken is [tex]\dfrac{T}{12}[/tex]