Answer:
Option C) 0.2358
Step-by-step explanation:
We are given the following data set:
0.23105, 0.4725, 0.8765, 0.4865, 0.5326, 0.7976
Formula:
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]Mean =\displaystyle\frac{3.39675}{6} = 0.566125[/tex]
Sum of squares of differences = 0.1122752556 + 0.008765640625 + 0.09633264063 + 0.006340140625 + 0.001123925625 + 0.05358067562 = 0.2784182787
[tex]S.D = \sqrt{\frac{0.2784182787}{5}} = 0.2358[/tex]
Thus, the standard deviation for given data is
Option C) 0.2358