Find the sample standard deviation of the following data set, using the statistical functions on your calculator.0.2315 0.4725 0.87650.4865 0.5326 0.7976A.0.5662B.0.2153C.0.2358D.0.1895

Respuesta :

Answer:

Option C) 0.2358

Step-by-step explanation:

We are given the following data set:

0.23105, 0.4725, 0.8765, 0.4865, 0.5326, 0.7976

Formula:

[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]  

where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.  

[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]

[tex]Mean =\displaystyle\frac{3.39675}{6} = 0.566125[/tex]

Sum of squares of differences = 0.1122752556 + 0.008765640625 + 0.09633264063 + 0.006340140625 + 0.001123925625 + 0.05358067562 = 0.2784182787

[tex]S.D = \sqrt{\frac{0.2784182787}{5}} = 0.2358[/tex]

Thus, the standard deviation for given data is

Option C) 0.2358