Respuesta :

Answer:

Volume of NaOH required = 3.61 L

Explanation:

H2SO3 is a diprotic acid i.e. it will have two dissociation constants given as follows:

[tex]H2SO3\leftrightarrow H^{+}+HSO3^{-}[/tex] --------(1)

where,  Ka1 = 1.5 x 10–2  or pKa1 = 1.824

[tex]HSO3^{-}\leftrightarrow H^{+}+SO3^{2-}[/tex] --------(2)

where,  Ka2 = 1.0 x 10–7 or pKa2 = 7.000

The required pH = 6.247 which is beyond the first equivalence point but within the second equivalence point.

Step 1:

Based on equation(1), at the first eq point:

moles of H2SO3 = moles of NaOH

[tex]i.e. \ 5.13\  moles/L*0.385L = moles\  NaOH\\therefore, \ moles\  NaOH = 1.98\ moles\\V(NaOH)\ required = \frac{1.98\ moles}{0.615\ moles/L} =3.22L[/tex]

Step 2:

For the second equivalence point setup an ICE table:

                  [tex]HSO3^{-}+OH^{-}\leftrightarrow H2O+SO3^{2-}[/tex]

Initial           1.98                    ?                                       0

Change      -x                       -x                                       x

Equil           1.98-x                 ?-x                                    x

Here, ?-x =0 i.e. amount of OH- = x

Based on the Henderson buffer equation:

[tex]pH = pKa2 + log\frac{[SO3]^{2-} }{[HSO3]^{-} } \\6.247 = 7.00 + log\frac{x}{(1.98-x)} \\x=0.634 moles[/tex]

Volume of NaOH required is:

[tex]\frac{0.634\ moles}{0.615 moles/L}=0.389L[/tex]

Step 3:

Total volume of NaOH required = 3.22+0.389 =3.61 L