If a bacteria population starts with 100 bacteria and doubles every three hours, then the number of bacteria after t hours is n = f(t) = 100 · 2^t/3. Find the inverse of this function and explain its meaning.

Respuesta :

Answer:

[tex]f^{-1}=3ln_2(\frac{t}{100})[/tex]

f^-1 represents the number of hours the bacteria developed

Step-by-step explanation:

[tex]f(t) = 100 \cdot  2^\frac{t}{3}[/tex]

To find inverse of a function , replace f(t) with y

[tex]y= 100 \cdot  2^\frac{t}{3}[/tex]

replace t with y and y with x

[tex]x= 100 \cdot  2^\frac{y}{3}[/tex]

solve for y

divide both sides by 100

[tex]\frac{x}{100} =2^\frac{y}{3}[/tex]

take ln on both sides

[tex]ln \frac{x}{100} =\frac{y}{3}ln 2[/tex]

divide both sides by ln

[tex]ln_2(\frac{x}{100}) =\frac{y}{3}[/tex]

multiply by 3 on both sides

[tex]y=3ln_2(\frac{x}{100})[/tex]

Replace x with t  and y with f^-1

[tex]f^{-1}=3ln_2(\frac{t}{100})[/tex]

f^-1 represents the number of hours the bacteria developed