Answer:
Actually two points belong to the Domain and Range of this function, namely C, (8,21) D (2,16) and could be true for h(x)
Step-by-step explanation:
1) In other words, we have two pairs (8,19) and (-2,2):
2) Plugging in each values on every condition:
[tex]D=-3 \leqslant x \leqslant 11 \:\:\:R= 1 \leqslant h(x) \leqslant 25\\A)D=-3 \leqslant 13 \leqslant 11 \:\:\:R= 1 \leqslant 18 \leqslant 25\:\:\:\:FALSE\\B)D=-3 \leqslant -3 \leqslant 11 \:\:\:R= 1 \leqslant -1 \leqslant 25 \:FALSE\\C)D=-3 \leqslant 8 \leqslant 11 \:\:\:R= 1 \leqslant 21 \leqslant 25\:True\\D)D=-3 \leqslant 2 \leqslant 11 \:\:\:R= 1 \leqslant 16 \leqslant 25\: True[/tex]
We have two points that belong to the Domain and Range.
3) Actually two points belong to the Domain and Range of this function, namely C, (8,21) D (2,16) and could be true for h(x)