Project A has cash flows of −$50,000, $49,400, $27,200, and $24,500 for Years 0 to 3, respectively. Project B has an initial cost of $50,000 and an annual cash inflow of $18,500 for four years. These are mutually exclusive projects. What is the crossover rate?

Respuesta :

Answer:

Crossover rate is the rate at which the NPV of two projects are equal is called crossover rate. The NPV of any project is computed by the following formula:

NPV = CF1/(1 + r)^1 +  CF2/(1 + r)^2  +  CF3/(1 + r)^3 − Initial Investment

Now for Project A and B, we have following equations:

NPV1 = CF1/(1 + r)^1 + CF2/(1 + r)^2 + CF3/(1 + r)^3 − A

NPV2 = CF1/(1 + r)^1 + CF2/(1 + r)^2 + CF3/(1 + r)^3 + CF4/(1 + r)^4 − B

By putting values we have:

NPV1 = 49400/(1 + r)^1 +  27200/(1 + r)^2 + 24500/(1 + r)^3 − 50,000

And

NPV2 = 18500/(1 + r)^1 + 18500/(1 + r)^2 + 18500/(1 + r)^3 + 18500/(1 + r)^4 − 50,000

Now at crossover rate (a point of intersection of equation of project A and project B), the NPV of project A equals the NPV of project B. This means

NPV equation of project A   =    NPV equation of project B

49400/(1 + r)^1 +  27200/(1 + r)^2 + 24500/(1 + r)^3 − 50,000 = 18500/(1 + r)^1 + 18500/(1 + r)^2 + 18500/(1 + r)^3 + 18500/(1 + r)^4 − 50,000

Adding +50,000 on both sides of equal sign will cancel out the -50,000 on both sides. Now the equation is as under

49400/(1 + r)^1 +  27200/(1 + r)^2 + 24500/(1 + r)^3  = 18500/(1 + r)^1 + 18500/(1 + r)^2 + 18500/(1 + r)^3 + 18500/(1 + r)^4

Moving left hand side to right hand side will change the signs

0 = 18500/(1 + r)^1 + 18500/(1 + r)^2 + 18500/(1 + r)^3 + 18500/(1 + r)^4 - 49400/(1 + r)^1 - 27200/(1 + r)^2  -  24500/(1 + r)^3

Now rearranging according to the denominator,

0 = [18500/(1 + r)^1 - 49400/(1 + r)^1 ] + [18500/(1 + r)^2 - 27200/(1 + r)^2] + [18500/(1 + r)^3  -  24500/(1 + r)^3] + 18500/(1 + r)^4

Now taking denominators common from brackets we have:

0 = [18500 - 49400]/(1 + r)^1 + [18500 - 27200]/(1 + r)^2 + [18500 - 24500]/(1 + r)^3 + 18500/(1 + r)^4

Adding amounts in the brackets we have:

0 = -30,900/(1 + r)^1 - 8,700/(1 + r)^2  -  6,000/(1 + r)^3 + 18500/(1 + r)^4

Multiplying by Minus 1 on both sides we have:

0 = 30,900/(1 + r)^1 + 8,700/(1 + r)^2  +  6,000/(1 + r)^3 - 18500/(1 + r)^4

Now the equation we have can be used for finding "R" by using IRR method.

Using Internal Rate of Return method:

Year   Cash flow    Lower rate@30%    NPV at lower rate

1          30,900               0.769                             23769

2           8,700                0.592                              5148

3           6,000                0.455                              2731

4         (18,500)              0.350                             (6477)

Total                                                                       25171

Now using  higher rate we will find NPV at higher rate:

Year   Cash flow    Higher rate@32%    NPV at higher rate

1          30,900               0.758                             23409

2           8,700                0.574                              4993

3           6,000                0.435                             2609

4         (18,500)              0.330                            (6094)

                        Total                                            24917

IRR equation= Lower rate + [NPV at lower rate/(NPV at lower rate - NPV at higher rate)] * (Higher rate -lower rate)

Now putting values in the IRR equation we can find the crossover rate:

Crossover rate= 30% + [25171/(25171-24917)]*(32-30)%

Crossover rate = 30% + 1.98%= Almost 32%