Answer:
The density of the unknown liquid is 1.025 kg/m³ (considering the density of the water as 1.000 kg/m³)
Explanation:
The hydrometer works by the Archimedes principle. The cylinder floats in the liquid because the hydrostatic thrust is equal to the weight force. This means:
[tex]Tr-W=0N\\Tr=W\\\delta_{fl} \cdot Vol \cdot g =W_{hydr}[/tex]
If we measure 2 fluids, the weight of the hydrometer is the same, so:
[tex]\delta_{fl1} \cdot Vol_1 \cdot g =W_{hydr}=\delta_{fl2} \cdot Vol_2 \cdot g\\\delta_{fl1} \cdot Vol_1 =\delta_{fl2} \cdot Vol_2\\\delta_{fl1} H_1 \pi R^2 =\delta_{fl2} H_2 \pi R^2\\\delta_{fl1}\frac{H_1}{H_2}=\delta_{fl2}[/tex]
If the original watermark height is 12.3cm (H₁) and the mark for water has risen 0.3 cm above the unknown liquid–air interface, the height of the unknown liquid mark is 12cm (H₂). Therefore:
[tex]delta_{fl1}\frac{H_1}{H_2}=\delta_{fl2}\\1.000\frac{kg}{m^3} \frac{12.3cm}{12cm}=\delta_{fl2}=1.025\frac{kg}{m^3}[/tex]