Respuesta :

Answer:

Therefore

m∠Y = 41.1°

Step-by-step explanation:

Given:

In Δ YSE ,

m∠S = 70°

YE = 10 = side opposite to ∠Y

SE = 7 = side opposite to ∠S

To Find:

m∠Y = ?

Solution:

In Δ ABC, Sine Rule says

[tex]\dfrac{a}{\sin A}= \dfrac{b}{\sin B}= \dfrac{c}{\sin C}[/tex]

So here In Δ YSE,

[tex]\dfrac{YE}{\sin S}= \dfrac{SE}{\sin Y}= \dfrac{YS}{\sin E}[/tex]

substituting the given values we get

[tex]\dfrac{10}{\sin 70}= \dfrac{7}{\sin Y}\\\\\sin Y=\dfrac{0.939\times 7}{10}=0.6577\\\\Y=\sin^{-1}0.6577=41.1\°[/tex]

Therefore

m∠Y = 41.1°

Answer:

The measure of angle Y is 41.1°

Step-by-step explanation:

Given as :

The figure is of triangle YES

The measure of angle S = ∠a = 70°

Let The measure of angle Y = ∠b = x°

The measure of side EY = a =  10 unit

The measure of side SE = b =  7 unit

Now, According o question

From The Law of Sin

[tex]\dfrac{a}{Sina}[/tex] = [tex]\dfrac{b}{Sinb}[/tex] = [tex]\dfrac{c}{Sinc}[/tex]

So, from figure

[tex]\dfrac{EY}{Sin S}[/tex] = [tex]\dfrac{SE}{Sin Y}[/tex]

Compare with sin Law

[tex]\dfrac{a}{Sina}[/tex] = [tex]\dfrac{b}{Sinb}[/tex]

Or, [tex]\frac{10}{Sin 70^{\circ}}[/tex] =  [tex]\frac{7}{Sin x^{\circ}}[/tex]

Or, [tex]\dfrac{10}{0.9396}[/tex] =   [tex]\frac{7}{Sin x^{\circ}}[/tex]

Or, 10.642 =   [tex]\frac{7}{Sin x^{\circ}}[/tex]

Or, Sin x° = [tex]\dfrac{7}{10.642}[/tex]

Or, Sin x° = 0.65777

∴ x = [tex]Sin^{-1}0.65777[/tex]

i.e x = 41.1°

So,The measure of angle Y =  x = 41.1°

Hence, The measure of angle Y is 41.1°   Answer