Respuesta :

Answer:

The zeros are x+3 ,[tex]x-(3+\sqrt{5})[/tex] and [tex]x-(3-\sqrt{5})[/tex]

and is given by

[tex]f(x)=x^3-3x^2-14x+12=(x+3)(x-(3+\sqrt{5}))(x-(3-\sqrt{5}))[/tex]

Step-by-step explanation:

Given polynomial function is [tex]f(x)=x^3-3x^2-14x+12[/tex]

To find the zeros:

Equate the polynomial function to zero

That is f(x)=0

[tex]f(x)=x^3-3x^2-14x+12=0[/tex]

By using synthetic division method we can find zeros

-3_| 1     -3     -14     12

      0    -3       18   -12

    _______________

      1      -6      4      0

Therefore x+3 is a zero

Ie., x=-3

Now the quadratic equation is [tex]x^2-6x+4=0[/tex]

Here a=1 , b=-6 and c=4

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-(-6)\pm\sqrt{(-6)^2-4(1)(4)}}{2(1)}[/tex]

[tex]x=\frac{6\pm\sqrt{36-16}}{2}[/tex]

[tex]x=\frac{6\pm\sqrt{20}}{2}[/tex]

[tex]x=\frac{6\pm2\sqrt{5}}{2}[/tex]

[tex]x=3\pm\sqrt{5}[/tex]

Therefore [tex]x=3+\sqrt{5}[/tex] and [tex]x=3-\sqrt{5}[/tex]

[tex]x-(3+\sqrt{5})[/tex] and [tex]x-(3-\sqrt{5})[/tex]

Therefore the zeros are x+3 ,[tex]x-(3+\sqrt{5})[/tex] and [tex]x-(3-\sqrt{5})[/tex]

[tex]f(x)=x^3-3x^2-14x+12=(x+3)(x-(3+\sqrt{5}))(x-(3-\sqrt{5}))[/tex]