4. Show that both x1(t) = e−tcos tandx2(t) = e−tsin t are solutions to the second-order differential equation x′′+ 2x′+ 2x = 0. Show that x(t) = Ae−tsin t + Be−tcos t is a solution for any values of the constants A and B

Respuesta :

Answer:

Shown!

Step-by-step explanation:

First let's show that the given parameters are solutions of ODE.

[tex]x_1(t) = e^{-t}\cos t\\x_1'(t) = -e^{-t}\cos t-e^{-t}\sin t\\x_1''(t) = e^{-t}\cos t+e^{-t}\sin t+e^{-t}\sin t-e^{-t}\cos t=2e^{-t}\sin t\\\\x''+2x'+2x =2e^{-t}\sin t-2e^{-t}\cos t-2e^{-t}\sin t+2e^{-t}\cos t=0[/tex]

[tex][tex]x_2(t) = e^{-t}\sin t\\x_2'(t) = -e^{-t}\sin t+e^{-t}\cos t\\x_2''(t) = e^{-t}\sin t-e^{-t}\cos t-e^{-t}\cos t-e^{-t}\sin t=-2e^{-t}\cos t\\\\x''+2x'+2x =-2e^{-t}\cos t-2e^{-t}\sin t+2e^{-t}\cos t+2e^{-t}\sin t=0[/tex]

Is is showed that both are the solutions.

Now, let's prove it for general case by solving ODE.

[tex]x''+ 2x'+ 2x = 0\\r^2+2r+2=0\\[/tex]

Roots are [tex]r_1 = -1-i,\:r_2=-1+i[/tex]

So the solution is as follows:

[tex]x(t)=C_1e^{(-1-i)t}+C_2e^{(-1+i)t}[/tex]

Since by Euler's Formula,

[tex]e^{-it}=\cos t - i\sin t\\e^{it}=\cos t+i\sin t[/tex]

Hence,

[tex]x(t) = Ae^{-t}\sin t+ Be^{-t}\cos t[/tex]