Respuesta :

Answer:

[tex]\frac{10}{3} \ inches[/tex] of square should be cut out of each corner to create a box with the largest volume.

Step-by-step explanation:

Given: Dimension of cardboard= 16 x 30“.

As per the dimension given, we know Lenght is 30 inches and width is 16 inches. Also the cardboard has 4 corners which should be cut out.

Lets assume the cut out size of each corner be "x".

∴ Size of cardboard after 4 corner will be cut out is:

Length (l)= [tex]30-2x[/tex]

Width (w)= [tex]16-2x[/tex]

Height (h)= [tex]x[/tex]

Now, finding the volume of box after 4 corner been cut out.

Formula; Volume (v)= [tex]l\times w\times h[/tex]

Volume(v)= [tex](30-2x)\times (16-2x)\times x[/tex]

Using distributive property of multiplication

⇒ Volume(v)= [tex]4x^{3} -92x^{2} +480x[/tex]

Next using differentiative method to find box largest volume, we will have [tex]\frac{dv}{dx}= 0[/tex]

[tex]\frac{d (4x^{3} -92x^{2} +480x)}{dx} = \frac{dv}{dx}[/tex]

Differentiating the value

⇒[tex]\frac{dv}{dx} = 12x^{2} -184x+480[/tex]

taking out 12 as common in the equation and subtituting the value.

⇒ [tex]0= 12(x^{2} -\frac{46x}{3} +40)[/tex]

solving quadratic equation inside the parenthesis.

⇒[tex]12(x^{2} -12x-\frac{10x}{x} +40)[/tex]=0

Dividing 12 on both side

⇒[tex][x(x-12)-\frac{10}{3} (x-12)][/tex]= 0

We can again take common as (x-12).

⇒ [tex]x(x-12)[x-\frac{10}{3} ][/tex]=0

∴[tex](x-\frac{10}{3} ) (x-12)= 0[/tex]

We have two value for x, which is [tex]12 and \frac{10}{3}[/tex]

12 is invalid as, w= [tex](16-2x)= 16-2\times 12[/tex]

∴ 24 inches can not be cut out of 16 inches width.

Hence, the cut out size from cardboard is [tex]\frac{10}{3}\ inches [/tex]

Now, subtituting the value of x to find volume of the box.

Volume(v)= [tex](30-2x)\times (16-2x)\times x[/tex]

⇒ Volume(v)= [tex](30-2\times \frac{10}{3} )\times (16-2\times \frac{10}{3})\times \frac{10}{3}[/tex]

⇒ Volume(v)= [tex](30-\frac{20}{3} ) (16-\frac{20}{3}) (\frac{10}{3} )[/tex]

 Volume(v)= 725.93 inches³