Respuesta :

Answer:

Therefore Area of Rectangle is 50 unit².

Step-by-step explanation:

Given:

Let the vertices of a Rectangle be

A ( -1 , 7)

B ( 4 , -3)

C ( 0 , -5)

D ( -5 ,5)

To Find:

Area of Rectangle ABCD = ?

Solution:

First we will find the Length and Width of Rectangle by Distance Formula ,

[tex]l(AB) = \sqrt{((x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} )}[/tex]

Substituting the values we get

[tex]l(AB) = \sqrt{((4-(-1))^{2}+(-3-7)^{2} )}[/tex]

[tex]l(AB) = \sqrt{((5)^{2}+(-10)^{2} )}\\l(AB)=\sqrt{125}=5\sqrt{5}\ unit[/tex]

Similarly for BC we will have,

[tex]l(BC) = \sqrt{((0-4)^{2}+(-5-(-3))^{2} )}\\l(BC)=\sqrt{20}=2\sqrt{5}\ unit[/tex]

Now

[tex]Length=AB =5\sqrt{5}\ unit\\Width=BC=2\sqrt{5}\ unit[/tex]

Now Area of Rectangle is given by

[tex]\textrm{Area of Rectangle}=Length\times Width[/tex]

Substituting the values we get

[tex]\textrm{Area of Rectangle ABCD}=5\sqrt{5}\times 2\sqrt{5}=10\times 5=50\ unit^{2}[/tex]

Therefore Area of Rectangle is 50 unit².